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TECHNICAL MEMORANDUM X-850

A COMPARISON OF THE HYPERSONIC STATIC STABILITY
CHARACTERISTICS OF BLUNT- AND POINTED-NOSED
SLENDER ENTRY VEHICLES*

By Barbara J. Short, Ellis E. Whiting,
Robert L. Kruse, and Gerald N. Malcolm

SUMMARY

The differences in stability between pointed- and blunt-nosed slender entry
vehicles at hypersonic speeds have been investigated experimentally and theoret-
ically for two types of configurations - flare-stabilized cylindrical bodies and
slender conical bodies. The static stability of these configurations has been
measured in the Ames Supersonic Free-Flight Wind Tunnel at Mach numbers of 15
and 17. The data show that the initial stability of both configurations was
increased when the blunt nose was replaced with a pointed fairing. The moment
curves of the blunt-nosed models of both configurations were highly nonlinear.
For the sharp-nosed models with attached flow at low angles of attack, no non-
linearities in the moment curves were observed.

INTRODUCTION

With the change in design of entry vehicles from blunt, low-fineness-ratio
bodies to blunt-nosed, slender, flare-stabilized bodies, serious problems which
were originally unexpected were encountered in the area of static aerodynamic
stability. The stability decreased with increasing Mach number in the hyper-
sonic range, was highly nonlinear, and was badly overestimated by Newtonian
theory. These difficulties are noted in references 1 and 2, which also describe
a more accurate method for predicting the static stability.

Continuing advances in vehicle design suggest the desirability of using
pointed slender bodies for entry vehicles. However, since the static margin
decreased when blunt-nosed entry vehicles were made slender, further changes to
even more slender shapes would naturally be made with caution. It 1s necessary,
therefore, to study the question both analytically and experimentally to deter-
mine whether pointed slender vehicles pose any new aerodynamic stability prob-
lems in the hypersonic speed range.




A program to study these questions for two families of slendexr bodies
representative of advanced vehicle design was initiated at the Supersonic Free-
Flight Branch of the Ames Research Cenmter, NASA. Objectives were (1) to deter-
mine theoretically and experimentally the static stability of a pointed
flare-stabilized configuration at a Mach number of 15 for comparison with the
stability of this same body with a blunt nose, and (2) to obtain and compare with

theory the effect on the static stability of a slender cone of various amounts
of spherical and ogival bluntness.

SYMBOLS
A reference area, based on d, sgq ft
CD drag coefficient, based on A, dimensionless
CDi initial (at o = 0) drag coefficient, dimensionless
Cm pitching-moment coefficient, based on A and s, dimensionless
Cma pitching-moment-curve slope, per radian
Cmmi initial (at a = 0) pitching-moment-curve slope, per radian
CN@ normal~force-curve slope, per radian
d flared-model cylinder diameter or conical-model base diameter, £t
I moment of inertia about a transverse axis through the center of gravity,
slug-f£t2
1 model length, ft
M Mach number, dimensionless
m mass of model, slugs
js) static pressure, lb/sq 't
Py, free-stream air static pressure, lb/sq t
a dynamic pressure, 1b/sq £t
Ao free-stream air dynamic pressure, lb/sq 't
T radial distance measured from model axis, £t
Ty base radius, Tt
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T nose radius of curvature, ft

R Reynolds number based on free-stream conditions and d, dimensionless

] reference dimension, length of blunt-nosed flared models oxr base
diameter of conical models, £t

Vv model velocity relative to alr stream, ft/sec

X distance from nose along model axis, ft

Xog distance from nose to center-of-gravity location, ft

Xep distance from nose to center-of-pressure location, £t

o angle of attack, deg

S roct-mean-square angle of attack, deg

T stability parameter, XE E%E , dimensionless

rs initial (at o = 0) stability parameter, dimensionless

Oy nose-tangent angle, deg

A wave length of oscillation, f£t/cycle

Vv Prandtl-Meyer angle, deg

o) free-stream air density, slugs/cu t

Oy maximum resultant angle of pitching oscillation, deg (see sketch (a))
g5 minimum resultant angle of pitching oscillation, deg (see sketch (a))

MODELS AND TEST CONDITIONS

A sketch of the models tested is shown in figure 1. Figure 1(a) shows
superimposed the pointed-nosed, flare-stabilized configuration tested in the
present investigation and the spherical-nosed configuration tested in a prior
program. The models were constructed from two materials, a tungsten alloy and
aluminum, so that the center of gravity could be positioned at the indicated dis-
tance from the base for both models. Figure 1(b) shows the 12.5° half-angle cone
with a series of tangent ogives with nose angles of 90° (spherical), 450, 200,
and 12.5° (the sharp cone). These models were also bimetallic in construction.
To determine the center-of-pressure location of the conical models each configu-
ration was tested with two center-of-gravity locations. The center of gravity
was positioned sbout 0.74d and 0.84d4 from the base, except for the sharp cone




where it was about 0.90d and 1.02d from the base. These locations, along with
other model measurements, test conditions, and final results, are listed in
table I.

The models were launched from a single-stage, shock-heated, light-gas gun
into a Mach number 3 countercurrent air stream. The conmbined velocity of the
model and air stream was approximately 10,000 ft/sec for the flared models and
12,000 ft/sec for the conical models, corresponding to Mach numbers of about 15
and 17, respectively. The time-distance histories and the attitude histories of
the models in free flight were recorded by nine spark-shadowgraph stations along
the flight path.

METHOD OF ANATYSIS

Theoretical Procedures

The static aerodynamic stability of the flare-stabilized configuration was
analyzed theoretically by separate consideration of the three component parts -
the nose, the cylinder, and the flare. The contribution of the nose segment to
normal force and pitching moment was determined by modified Newtonian impact
theory. The contribution of the cylinder was found by the method discussed in
references 1 and 2, hereinafter referred to as the Av = o method. The flare
contribution to stability was determined by embedded Newtonian flow theory, an
impact flow theory with the stream properties approaching the ramp as initial
conditions, as described in references 1 and 3. The above procedures resulted
in stability coefficients for each segment which were combined for the total sta-
bility of the vehicle.

In order to use the theoretical procedures outlined in the previous para-
graph it 1s necessary to know the static pressure distribution along the cylinder
and the dynamic pressure distribution over the flare at zero angle of attack.
These properties for a real gas in equilibrium flow can be computed by the numer-
ical procedure described in reference 4. This method of flow-field construction
is based on a known bow-shock-wave profile and assumes a radial pressure distri-
bution mathematically similar to the blast-wave pressure distribution between the
body surface and the shock wave. To estimate the static stability, therefore,
it was necessary to construct an approximate bow shock wave.

The estimated shock wave for the pointed flare-stabilized body was con-
structed in the following way: The computed conical shock wave over the nose
was exbtended to the first point of interaction between the shock wave and the
expansion fan emanating from the cone-cylinder junction. Far downstream the form
of the wave was assumed to be r/d = K(x/d)¥2, as specified by blast-wave theory.
The coefficlent, K, was taken to be 0.65 from an extrapolation of the shock-wave
data in figure 14 of reference 5. In logarithmic coordinates these two shock=-
wave segments appear as intersecting straight lines. In order to make the shock-
wave slope continuous at all points, a transition section, described analytically
by a circular arc in the log(r/d), log(x/d) plane, joined the nose-region seg-
ment and the downstream segment. After the tests, the actual shock wave was



measured and another estimate of static stability was computed based on the true
shock wave. The constructed shock wave 1s compared with the experimental shock
wave in figure 2.

The zero angle~of=-attack pressure distributions over the cylinder, computed
by the procedure outlined in reference U4, are shown in figure 3. Also shown in
this figure is the pressure distribution for the blunt-nosed body, which was
calculated from an experimental shock wave during the previous program. Although
the pressure distribution for the pointed body is unusual in that it shows a sta-
tion of maximum surface pressure about one diameter behind the cone base, it does
fair in smoothly with the pressure Jjust downstream of the nose-cylinder junction
found by expanding the cone flow (ref. 6) onto the cylinder, and, further, it
comes into agreement with the pressure for the blunt-nosed body farther down-
stream where the effects of detailed differences in nose shape have diminished.

The computed dynamic-pressure distributions incident on the flare at zero
angle of attack for both the blunt- and pointed-nosed bodies are shown in Yig-
ure 4. The much higher dynamic-pressure ratio over the flare surface for the
pointed body is immediately apparent. With the dynamic pressure higher by this
amount, the normal force on the flare of the pointed hody will be approximately
2—1/2 times that for the blunt-nosed body according to references 1 and 3.

Figure 5 shows the computed distribution of the incremental normal-force-
curve slope along the model axis for both the pointed- and blunt-nosed bodies.
The normal force of the pointed body is appreciably higher than that of the blunt
body and is distributed in a way to give a more rearward position of the center
of pressure. The static stability of the pointed body about the center of grav-
ity shown in figure 1(a) is computed to be about three times that of the blunt
body.

The simpler shapes of the series of conical f‘—————‘ A —————"1

configurations lend themselves to less compli-

cated theoretical analysis. The theoretical o
results for these models were obtained by use of
modified Newtonian impact theory, the Av = a O
method, and, for the sharp cone, conical flow A
theory (ref. 6). The values of Crngy, computed L

by impact theory were more than twice those com-
puted by the Av = a method for all the cones. a

Data Reduction \
/"m
B

The method of data presentation used in o
this report follows the development presented <;-’//;}/

in reference 7 and further discussed in refer-
ence 8. TIn this method the static stability
is deduced from the measured wave length of
oscillation, A, (see sketch (a)) by means of
the following relation, I' = (1/A2) (I/pAs). Sketch (a)




It has been shown in reference 8 that I is a convenient parameter which
describes the stability of a vehicle in free flight. This method of data presen-
tation permits analysis of nonlinear pitching moments when I' is plotted versus
the amplitude of oscillation in the form (002 + Gm?). For complex nonlinear
cases, the methods of references 9, 10, and 11 can be applied, under suitable
restrictions, to define the pitching-moment curve.

In this report, whenever a complex nonlinear case was indicated, the method
of reference 11, as discussed in the appendix of reference 8, was used. This
method was developed on the assumption of planar pitching motion and for very
nearly sinusoidal oscillations. Although the present tests did not display truly
planar pitching motion, they did fall within the empirically defined limits of
planar motion given in reference 10 as reasonsbly planar motion with og/o, < 1/3.
The analysis of reference 11 is spproximate, but can, nevertheless, be applied to
cages in which the pitching moment is represented to any degree in odd powers of
o, Furthermore, the solution is easy to apply and has been found to give relia-
ble answers.

RESULTS AND DISCUSSION

Flare-Stabilized Models

The experimental data for these models in terms of T vs. (0o° + opf) are
shown in figure 6. The reference dimension used to calculate I' was the length
of the blunt-nosed model. The blunt-body data are reproduced from reference 2.
The data for the pointed body lie above the blunt-body data, particularly at
small angles of attack. However, considerable scatter is apparent in the
pointed-body data, especially in the case of the smallest pitching amplitude run,
run 976. The first pointed-body test (run 965 in table I) was made at a free-
stream Reynolds number of 1.34 million, based on cylinder diameter. An examina-
tion of the shadowgraph record for this test indicated the boundary layer was
laminar and the flow separated over most of the cylinder, even near zero angle of
attack. It has been shown in reference 12 that a separated boundary layer
increases the stabilizing effect of the flare. However, an evaluation of the
theoretical methods described above and a valid comparison with the blunt-nosed
body could be made only for attached flow. An effort was, therefore, made to
eliminate the separation by increasing the free-stream Reynolds number for all
subsequent tests to the maximum attainable at this model scale and velocity,
approximately 2.3 million based on body diameter. This increase in Reynolds
nunber reduced the amount of separation at zero angle of attack, but did not
noticeably alter the separation pattern at angles of attack above 3° or LO.

Because increasing the Reynolds number did not eliminate flow separation, an
additional step was taken. It is well known that a turbulent boundary layer is
more difficult to separate than a laminar one. Therefore, the models were modi-
fled to initiate turbulence in the boundary layer at the cone-cylinder junction.
Sketch (b) shows the boundary-layer trip used to promote turbulence. It was con-
sidered that vorticies formed by the flow passing through the slots on the nose
should tend to trip the boundary layer. Although the modification to the




cylindrical portion of the model probably had a slight destabilizing effect on
over-all missile stability, the amount was estimated to be small and, hence, was
disregarded.
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Sketch (b)

Two modified models were tested and the data are shown by the filled symbols
in figure 6. The shadowgraph records indicate that the boundary layer on these
test models was indeed turbulent. Also the record shows that boundary-layer sep-
aration did not occur on the low amplitude test (o = 3.1°) but did occur on the
high angle-of-attack test (Gm = 11.5°) at angles of attack of 79 and greater.

The low amplitude test provides a good measure of the initial (o = 0) stability
with attached flow.

The theoretical estimates of Ty are also shown in figure 6. The estimate
of Ty, computed from the experimental shock-wave shape, is about 25 percent
lower than the indicated value of TI'. for the attached-flow experimental data.
It was found in reference 2 that the theory also underestimated the stgbility of
the blunt-nosed configuration, as indicated in figure 6.

The pitching-moment curves corresponding to the experimental data and
theoretical estimates shown in figure 6 are presented in figure 7. A comparison
of the stablility of blunt- and pointed-nosed bodies with attached flow is shown
in figure 7(a). The blunt-body data and analyses are from reference 2, as noted
earlier. If the flow is attached at low angles of attack, the effect of the
pointed nose is to increase the stability and eliminate the nonlinearity of the
pitching-moment curve. However, the boundary layer is more likely to separate if
the nose is pointed. The effect of separation on the stability of the pointed-
nosed body is shown in figure 7(b). Boundary-layer separation in this case has
two effects on the static stability: (1) in the low amplitude region the sta-
bility is markedly increased, and (2) the pitching moment becomes a highly non-
linear function of angle of attack.

Conical Models

The experimental measurements for the series of conical models are
summarized in table I(b). Figure 8 shows the results for the sphere cone with




both locations of the center of gravity. The stability parameter, ', is plotted
against (042 + op2) in figure 8(a). The curve for the models with the forward
center of gravity is in doubt at values of (002 + Gm?) less than 150 because of
the lack of data at small angles of attack. Therefore, two fairings are shown;
they will be discussed later.

Included in the figure are the values of I' at zero angle of attack
calculated by the Av = o method and by modified Newtonian impact theory. The
initial stability calculated by the Av = o method agrees within 20 percent with
the experimental data; whereas, the impact theory predicts an initial stability
2.5 times greater than measured.

The pitching-moment curves deduced from these experimental data are shown in
figure 8(b) along with the curves calculated by use of Newtonian theory and the
initial slopes calculated by the Av = o method. At low angles of attack, the
pitching moment agrees with that predicted by the Av = o method; however, the
pitching-moment curve is highly nonlinear and agrees with Newtonian theory at
angles of attack greater than the half-angle of the cone.

The center-of-pressure location calculated from the pitching-moment curves
for the two center-of-gravity locations is shown in figure 8(c). The solid curve
was obtained with the use of the solid curves in figure 8(a). The effect of mov-
ing the upper curve in figure 8(a) to the position indicated by the dashed curve
is shown by the dashed curve in figure 8(c). This uncertainty in the cenber-of-
pressure position at low angles of atbtack, a conseqguence of the lack of data in
this region for the models with the forward center of gravity, has little effect
on the pitching-moment curve (fig. 8(b)).

The data for the 145° ogive cone, the 200 ogive cone, and the sharp cone
showed. no variation of the stability parameter with (GO2 + Gm?) to values of
about 300. Therefore, the pitching-moment-curve slope, Crg» 18 constant for a

given center of gravity and was plotted versus center-of-gravity location

(fig. 9) to determine the normal-force-curve slope and the center-of-pressure
location (fig. 10). These data are shown along with the curves calculated by use
of modified Newtonian impact theory, the Av = o method, and conical-flow theory.
The previously discussed center-of-pressure location for the sphere-cone config-
uration at « = 0, and the corresponding normal-force-curve slope, CN@’ are
included in figure 10. The nose~tangent angle is used as the independent vari-
able for clarity in presenting the data. As can be seen in figure 1(b), these
configurations form a family of shapes with varying nose radius of curvature from
infinity for the sharp cone to 0.25d for the sphere cone. The symbols in fig-
ure 10 are the results of fairing best fitting lines to the data of figure 9.

The symbols are barred to show the possible extreme limits of the values as a
result of the scatter in the data of figure 9. Figure 10(a) shows that CNOG is
not well defined by the data but is generally smaller than predicted, except for
the sphere-cone and the L45° ogive~cone configurations where the results of the

Av = o method agree with the experimental results. TFigure 10(b) shows the
center of pressure of the sharp cone and the ogive cones to be farther aft than
predicted. The center of pressure of the sphere cone at zero angle of attack is
between the locations predicted by Newtonian theory and the Av = o method.




Figures 9 and 10 indicate that the Av = « method is not reliable for the
bodies with pointed tips whereas The modified Newbonian theory is reasonably
accurate for such shapes.?t

If we consgider the nose radius of the spherically tipped cone as being
progressively reduced toward zero, then another method of transition between the
present blunt-nosed and pure cone configurations is described. To investigate
the relationship of experiment to theory in such a case, the slightly blunted
cone showvn in figure 11 (rN/d = 0.062) was tested with one center-of-gravity
location. Figure 11(a) shows the stability parameter along with initial values
of [' calculated by the Av = o method and by use of modified Newtonian impact
theory. The data show a higher initial stability than predicted by either
method. TFigure 11(b) shows the pitching-moment curve along with the curve calcu-
lated by use of modified Newtonian theory and the initial slope calculated by the
Av = o method. Modified Newtonian theory underestimates the pitching-moment
coefficient by about 30 percent at the low angles of attack and about 10 percent
at angles of attack greater than the cone half-angle. The initial slope pre-
dicted by the Av = o method is about one-third of the experimental value.

To show the effect of bluntness on stability for the family of spherical-
tipped 12.5° cones, the initial pitching-moment-curve slopes for a center-of-
gravity location of 0.89 diameter forward from the base are plotted versus the
ratio of nose-to-base radius in figure 12. The value of Cpo; for the
50-percent blunt sphere cone at this shifted center-of-gravity location was
calculated from the experimental normal-force-curve slope and center-of-pressure
location. The data indicate that there is an optimum bluntness for maximum sta-
bility between the sharp cone and the 50-percent blunt sphere cone. Included in
figure 12 are the curves obtained by the Av = o method and modified Newtonian
impact theory as well as the value predicted by conical flow theory. It can be
seen that conical flow theory predicts the stability of the sharp cone very sat-
isfactorily for this center of gravity. Newtonian theory predicts increasing
stability with increasing bluntness and becomes inaccurate for this class of
bodies as the bluntness is increased. The Av = o method is inaccurate for
pointed and slightly blunted cones and appears to be useful only for blunt-nosed
slender bodies whose length is limited to a few nose diameters.

It is interesting to note that for both the flare-stabilized and the conical
configurations, the pitching-moment curve is highly nonlinear for the models with
blunt noses, and the nonlinearity decreases with decreasing nose bluntness.

Also, for both configurations, the initial stability is increased when the blunt
nose is replaced with a weightless pointed fairing.

Drag coefficients were also obtained for all of the conical models tested,
and the results are summarized in figure 13. In figure l3(a), Cp 1is shown as
a function of the mean-squared angle of attack. Within the scatter of the data,
the drag 1s the same for the sharp cone, the 200 ogive cone, and the 12.5-percent
blunt sphere cone.

1little theoretical justification can be found for applying the Av = a
method to pointed-nosed bodies. 1In the case of spherical-nosed bodies, however,
theoretical reasons exist why the method should be valid to a distance of a few
nose diameters behind the blunt nose.




Cross plots of the drag coefficients at zero angle of attack, CDi’ are

shown in figures 13(b) and (e) along with the wave-drag coefficients predicted
by modified Newtonian impact theory and conical flow theory. The measured total
drag of the 50-percent blunt sphere cone and the 45° ogive cone agrees with the
values of wave drag predicted by impact theory. The sizable disagreement between
the experimental and theoretical values for the more pointed models is somewhat
surprising. PFor the sharp cone, the measured total drag is gbout 37 percent
higher than predicted by conical flow theory. Estimates show that skin friction
and base drag could account for a maximum of about 15 percent of this difference.
The shock-wave angle measured from the shadowgraphs agrees with the value pre-
dicted by conical flow theory. The test conditions were not in the region where
viscous interaction effects are important (according to existing theory) and the
maximum possible induced pressure drag could account for only 2 percent of the
difference.

Another possible explanation for the high measured drag of the pointed
models is the possibility of model damage. The models were bimetallic and under-
went high acceleration loads during launch. The bow shock wave was so close to
the body that the shadowgraphs could not reveal disturbances which would result
from deformetions in the model. Estimates show that the stress at the joint for
the sharp cone and the 12.5-percent blunt cone could have been equal to the com-
pressive strength. However, for the 20° ogive cone the stress at the joint could
not have been over 55 percent of the compressive strength and these models exhib-
ited the same high drag as the sharp cone. This would suggest that model damage
is not the cause of the discrepancy.

CONCLUSIONS

The effect of nose shape on the static stability of slender entry vehicles
at hypersonic speed has been investigated for flare-stabilized configurations
and for a series of conical configurations. On the basis of the results pre-
sented herein, the following conclusions can be drawn.

‘1. For both the flare-stabilized bodies and the slender conical bodies,
the initial stability is increased when the blunt nose is replaced with a weight-
less pointed fairing.

2. The pitching-moment curves are highly nonlinear for the blunt-nosed
bodies, and the nonlinearities decrease with decreasing nose bluntness.

3. Yor the flare-stabilized bodies, predictions by the method of refer-
ence 1 indicate the correct trend of change in initial stability with nose blunt-
ness.

4. On flare-stabilized vehicles, the boundary layer is more likely to

separate 1f the nose is sharp. If separation occurs, the stability increases
markedly and the pitching-moment curve becomes highly nonlinear.
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5. TFor spherically tipped cones, the meximum initial stability occurs with
an intermediate bluntness between the sharp cone and the 50-percent blunt sphere
cone; whereas, modified Newbonian impact theory predicts (incorrectly) a uniform
trend of increasing stability with increasing bluntness. The Av = o method
apparently should be restricted to blunt-nosed bodies whose length is limited to
g few nose diameters.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 25, 1963
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TABLE I.- TEST CONDITIONS, MODEL MEASUREMENTS, AND TEST RESULTS

(a) Flare-stabilized models

-6
Run M b?:lg o Vs leOs 5 leOS; IX].O7, Ny Yop) Om»
no. & 2 . ft/sec | slugs/ft3| slug | slug-ft° | ft/cycle | deg | deg
Blunt nosed
4h8 | 16.0 1.38 10730 0.902 0.3661 2.340 50.8 1.3 1 5.4
L5o | Ak, kb 1.25 9670 .906 366 | 2.350 29.5 1.0 |18.4
546 | 14.9 2.12 10220 1.515 .368 | 2.350 27.7 1.3 [13.9
Sharp nosed
965 | 14.8 1.34 9860 .939 .335 1 2.790 32.2 51 4.8
975 | 15.2 2.33 10190 1.595 328 | 2.690 27.8 T 6.3
976 | 15.2 2.32 10140 1.593 .330 | 2.740 28.0 71 1.5
1037 | 14.3 2.07 9700 1.538 .323 | 2.631 28.7 31 8.5
1038 | 14.1 2.13 9560 1.596 329 | 2.761 30.3 0 11.5
1042 | 15.0 2.18 10150 1.543 3271 2.720 30.8 1.4 1 9.8
1045 | 15.0 2.18 10190 1.530 328 | 2.721 25.0 1.0 k.7
10k7 | 1k.9 2.18 10080 1.553 322 | 2.665 23.6 T 2.3
1055 | 14.7 2.22 9990 1.572 313 | 2.606 31.3 2 111.5
1056 | 1.6 2.14 9950 1.528 312 | 2.601 30.8 .6 3.1_
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TABLE I.- TEST CONDITIONS, MODEL MEASUREMENTS, AND TEST RESULTS - Continued

(o)

Conical models

Rurn Rx107° v, ox10%,  |mx10%,| X107, A, o6, O,
no. | M basgd °n | f£t/sec slugs/ft3 slug |slug-ft° ft/cycle | deg deg
Sphere cone, Xcg/d = 0.613
929 | 17.1 | 2.59 11610 0.922 0.361| 0.807 23.3 3.9 16.6
931 118.0 | 2.65 12320 .899 .358| .792 29.8 1.1 6.5
93k | 17.3 | 2.57 11880 .907 358 .796 28.9 .2 6.9
obh7117.5 | 2.75 11790 .9hk2 .357| .810 25.5 .3 9.5
ok8 | 17.6 | 2.80 11800 .955 3571 .81k4 22.7 3.3 16.3
961 | 17.2 | 2.68 11520 .929 364 .825 27.2 .3 8.9
989 | 17.% | 2.79 11680 .952 3551 789 | 33.5 7 3.5
990 | 17.8 | 2.7k 12010 .919 .353]  .790 27.7 1.1 8.2
1012 | 16.7 | 2.63 11180 .ol6 3541 .807 23.3 2.6 13.5
1015 | 17.7 | 2.83 11840 .957 358 .817 25,7 .3 10.1
1032 | 17.6 | 2.69 11950 .927 .359( .821 23.6 1.5 13.4

1064k [ 16.0 | 2.18 11180 .851 352 .761 23.8 6 120
Sphere cone, xcg/d = 0.522
1013 | 15.9 | 2.48 10700 .ols 312 503 15.4 .6 18.3
101k | 16.6 | 2.60 11220 .9h2 291 .L8hL 16.6 3 12.9
1018 | 16.k | 2.52 11110 .929 292|505 15.7 .2 17.5
1024 | 15.9 | 2.4k 10840 .931 304 .50k 15.h A 21.3
1051 | 15.7 | 2.45 10670 .948 .320| .520 17.2 1 12.5
450 tangent ogive cone, xcg/d = 0.849
932 [17.2 | 4.39 11530 1.539 275 .856 19.3 1.5 17.6
936 | 17.9 | 2.76 12080 .932 283 .900 26.1 .3 8.6
938 118.0 | 2.76 12240 .936 272 874 25,2 .7 15.6
9ko | 18.2 | 2.83 12340 .942 2721 .87k 25.7 2.3 11.2
45° tangent ogive cone, xcg/d = 0.742
1023 [ 17.2 | 2.67 11570 .939 2171 .590 17.8 .8 12.9
1027 | 16.7 | 2.47 11420 .908 2261 .595 18.2 .6 10.7
1029 | 16.7 | 2.52 11350 .924 2321 .604 16.9 .2 13.3
1057 | 16.2 | 2.32 11290 .886 .239| .616 18.4 1.0 11.1
1058 [ 16.k | 2.40 11330 .91 .239| .616 18.3 .6 12.7
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TABLE I.- TEST CONDITIONS, MODEL MEASUREMENTS, AND TEST RESULTS - Concluded

(b)

Conical models -~ Concluded

Rx10~€ 3 3
Run v, EX10 mx10~ , | Ix107 A 9o, O s
no. | M basgd ORlrt/sec slugs/%ts slugJ slug—fé2 ft/c&cle deg dgg
20° tangent ogive cone, Xcg/d = 1.282
1033 | 17.5 2.6% 11780 0.907 0.221| 0.884 311 1.5%.5 {8.5%.5
1034 1 17.8 2.68 12160 .918 222 .879 32.2 .6 5.0
20© tangent ogive cone, xcg/d = 1.1hk4
1016 | 17.3 2.70 {11650 .939 2951 1.175 k.5 2.2 13.0
1019 { 16.4 2.52 11120 .926 292 | 1.181 25.0 .8 9.3
1030 | 17.2 2.60 |11740 .918 293 [ 1.17k 24,0 2.1 5.6
Sharp cone, xcg/d = 1.360
939 f17.2 2.62 {11710 .925 .300 | 1.378 25.6 1.4 11.6
958 | 17.8 2.71 |12020 .925 296 | 1.335 25.2 1.7 7.6
959 | 17.5 2.62 [11870 .913 .297 | 1.360 25.9 .5 7.3
988 [ 17.9 2.77 {12070 .93k .300| 1.334 24,8 .6 13.8
991 | 17.8 2.77 112020 .935 .301] 1.382 25.2 1.5 9.2
99k [ 17.6 2.82 {11810 .952 .3011 1.356 2.7 1.2 6.4
1050 | 16.9 2.55 |11k90 .918 299 | 1.367 25,4 .2 7.8
Sharp cone, Xcg/d = 1.230
1022 | 16.2 2.52 (10920 .939 254 875 16.8 6.4 13.0
1025 | 16.5 2.48 11280 L917 269 .913 18.0 3.6 15.5
1028 | 16.8 2.64 111310 .949 2621 .913 17.6 .3 17.0
1053 | 16.7 2.52  |11k20 .919 262 .9k0 18.0 1.0 11.3
1054 | 16.4 2.50 (11150 .926 259 .940 18.3 A 10.3
12.5-percent blunt sphere cone, xcg/d = 1.1h2
983 { 17.9 2.83 {12050 Lol .300¢1 1.371 22.2 1.1 6.1
1060 | 16.9 2.43  [11760 .891 294 1.305 2.7 1.3 6.6
1061 | 17.2 2.62 11660 .926 292 1.260 2.6 1.4 19.k4
1063 | 17.7 2.h2  [12390 .851 .295| 1.305 24 .8 1.1 13.2

15
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(a) Flare -stabilized models, d=0.258 inch.

(b) Conical models, d = 0.450 inch.

Figure 1.~ Sketches of models.
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Figure 3.- Computed pressure distribution along cylindrical section of
flare-stabilized bodies by method of reference L4; M = 15,




Ol
i
.8
Pointed-nose:
Constructed
|
6 —0 E—
q / !
e . |
E tal
I xperinental / |
4 I
|
Blunt nose
)/—‘II
> e l
/ —I
|
|
|
)
o) .6 e .8 S
r
T d T
Cylinder Flare base
radius radius

Figure 4.~ Computed dynamic-pressure distribution along flare surface; M = 15.
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(based on d)

Stability parameter, T

007
006
D/D/—
Modified /
005 Newtonian
X
eony & - 0.522
004 A o
4 . — \{3
/|
Xeq
'—YT—'=C16|3
.003
,002
/{ Av =a method
.00l
0 100 200 300 400 500

(0,2 +on?), degrees squared

(a) Variation of stability parameter with (002 +o-m2).

Figure 8.~ Stability data of sphere-cone configuration at M = 17.
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( based on d)
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(b) Comparison of experimental and theoretical

pitching -moment coefficients.

Figure 8.~ Continued.
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(c) Variation of center-of-pressure location with a,

Figure 8.~ Concluded.
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Figure 9.~ Stability data of sharp-cone and ogive~cone configurations at M = 17.
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(a) Variation of normal-force-curve slope with
nose - tangent angle.
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(b) Variation of center -of-pressure location
with nose-tangent angle.

Figure 10.~ Comparison of experimental and theoretical results of conical
configurations at M = 17.
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Figure 11.- Stability data of 12.5-percent blunt sphere-~cone at M = 17.
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Figure 11.~ Concluded.
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Figure 12.-~ Effect of bluntness on stability of sphere-cone with Xcg/d = 0.89
from base.
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(a) Variation of drag with mean-squared angle of attack.

Figure 13.~ Drag data of conical configurations at M= 17.
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(c) Effect of bluntness of sphere-cone on drag.
Figure 13.- Concluded.
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